Plasmodium falciparum Drug Resistance Phenotype as Assessed by Patient Antimalarial Drug Levels and Its Association With pfmdr1 Polymorphisms

نویسندگان

  • Maja Malmberg
  • Pedro E. Ferreira
  • Joel Tarning
  • Johan Ursing
  • Billy Ngasala
  • Anders Björkman
  • Andreas Mårtensson
  • José P. Gil
چکیده

BACKGROUND Multidrug-resistant Plasmodium falciparum is a major threat to global malaria control. Parasites develop resistance by gradually acquiring genetic polymorphisms that decrease drug susceptibility. The aim of this study was to investigate the extent to which parasites with different genetic characteristics are able to withstand individual drug blood concentrations. METHODS We analyzed 2 clinical trials that assessed the efficacy and effectiveness of artemether-lumefantrine. As a proof of concept, we used measured day 7 lumefantrine concentrations to estimate the concentrations at which reinfections multiplied. P. falciparum multidrug resistance gene 1 (pfmdr1) genotypes of these parasites were then correlated to drug susceptibility. RESULTS Reinfecting parasites with the pfmdr1 N86/184F/D1246 haplotype were able to withstand lumefantrine blood concentrations 15-fold higher than those with the 86Y/Y184/1246Y haplotype. CONCLUSIONS By estimating drug concentrations, we were able to quantify the contribution of pfmdr1 single-nucleotide polymorphisms to reduced lumefantrine susceptibility. The method can be applied to all long-half-life antimalarial drugs, enables early detection of P. falciparum with reduced drug susceptibility in vivo, and represents a novel way for unveiling molecular markers of antimalarial drug resistance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Polymorphisms in Plasmodium falciparum ABC Transporter Genes Are Associated with Major ACT Antimalarial Drug Resistance

Chemotherapy is a critical component of malaria control. However, the most deadly malaria pathogen, Plasmodium falciparum, has repeatedly mounted resistance against a series of antimalarial drugs used in the last decades. Southeast Asia is an epicenter of emerging antimalarial drug resistance, including recent resistance to the artemisinins, the core component of all recommended antimalarial co...

متن کامل

Clinical Pharmacology of the Antimalarial Chloroquine in Children and Their Mothers

Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are the parasites that infect humans. Plasmodium falciparum and Plasmodium vivax cause most of the malarial infections worldwide. Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are susceptible to chloroquine. Chloroquine was the world's most widely used antim...

متن کامل

Sequence analysis of pfcrt and pfmdr1 genes and its association with chloroquine resistance in Southeast Indian Plasmodium falciparum isolates

BACKGROUND Due to the widespread resistance of Plasmodium falciparum to chloroquine drug, artemisinin-based combination therapy (ACT) has been recommended as the first-line treatment. This study aims to evaluate the extent of chloroquine resistance in P. falciparum infection after the introduction of ACT. This study was carried out based on the mutation analysis in P. falciparum chloroquine res...

متن کامل

Role of Pfmdr1 in in vitro Plasmodium falciparum susceptibility to chloroquine, quinine, monodesethylamodiaquine, mefloquine, lumefantrine, and dihydroartemisinin.

The involvement of Pfmdr1 (Plasmodium falciparum multidrug resistance 1) polymorphisms in antimalarial drug resistance is still debated. Here, we evaluate the association between polymorphisms in Pfmdr1 (N86Y, Y184F, S1034C, N1042D, and D1246Y) and Pfcrt (K76T) and in vitro responses to chloroquine (CQ), mefloquine (MQ), lumefantrine (LMF), quinine (QN), monodesethylamodiaquine (MDAQ), and dihy...

متن کامل

The pfmdr1 gene is associated with a multidrug-resistant phenotype in Plasmodium falciparum from the western border of Thailand.

On the western border of Thailand, Plasmodium falciparum has become resistant to almost all antimalarial agents. The molecular basis of resistance in these parasite populations has not been well characterized. This study assessed genetic polymorphisms in the pfmdr1 gene in 54 parasites collected from the western border of Thailand to determine the relationship of pfmdr1 copy number and codon mu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 207  شماره 

صفحات  -

تاریخ انتشار 2013